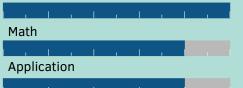


Autonome Lernende Roboter (ALR) Prof. Gerhard Neumann

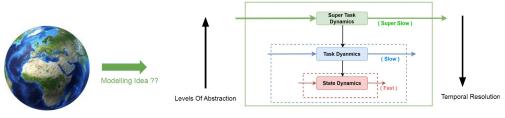
Project Type .

- Master Thesis
- Bachelor Thesis
- Praktikum
- Seminar


Supervisors.

v.shaj@kit.edu

Difficulty .


Algorithmic

Role of Hierarchy in World Models for Long-Term Prediction

Description

The ability to predict and simulate complex systems over extended time horizons is crucial in various fields, from climate science to economics to autonomous systems. World models [1, 3, 5] attempt to learn a compact and expressive representation of the environment dynamics from observed data. These models can predict possible future world states as a function of imagined action sequences and are a key ingredient of model-predictive control and model-based reinforcement learning. We will investigate a recent hierarchical architecture (under review) developed by our research group that models the world at multiple hierarchies*[4, 2]. The thesis will answer the question of how many hierarchies are needed to achieve accurate and efficient long-term predictions for sequences of different lengths (up to several 1000 timesteps).

Introduce notion of "state abstractions" and "action abstractions" ...

Tasks

The primary objectives of this research are as follows:

- Extend the current model: Extend the current model with 2 hierarchies to handle an arbitrary number of hierarchies.
- Evaluate the Impact of Hierarchy: Assess the significance of hierarchy in world models for long-term prediction tasks, focusing on prediction accuracy, computational efficiency, and generalization capabilities.
- Determine Optimal Hierarchy Levels: Investigate the optimal number of hierarchy levels required to balance prediction accuracy and computational efficiency in different domains and scenarios.
- Applications in Real-World Problems: Apply hierarchical world models to realworld long-term prediction problems, such as climate modelling, time-series forecasting and robotic datasets, to assess their practical utility.
- Interpretable Hierarchies: Develop methods to interpret and visualize the latent variables within world models, providing insights into their decision-making processes.

References

- [1] David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018.
- [2] Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from pixels. *Advances in Neural Information Processing Systems*, 35:26091–26104, 2022.
- [3] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning behaviors by latent imagination. *arXiv preprint arXiv:1912.01603*, 2019.
- [4] Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. *Open Review*, 62, 2022.
- [5] Vaisakh Shaj, Philipp Becker, Dieter Büchler, Harit Pandya, Niels van Duijkeren, C James Taylor, Marc Hanheide, and Gerhard Neumann. Action-conditional recurrent kalman networks for forward and inverse dynamics learning. In *Conference on Robot Learning*, pages 765–781. PMLR, 2021.