Benchmarking Model-Based RL Algorithms

Description
Research in model-based RL has not been very standardized. It is fairly common for authors to experiment with self-designed environments, and there are several separate lines of research, which are sometimes closed-sourced or not reproducible. Accordingly, it is an open question how these various existing MBRL algorithms perform relative to each other. To facilitate research in MBRL, there is already a work that gathers a wide collection of MBRL algorithms and propose over 18 benchmarking environments specially designed for MBRL [4]. The algorithms were benchmarked with unified problem settings, including noisy environments.

![Image of performance figures](source)

Figure 1: A subset of performance figures of the benchmarked algorithms [4].

In this project, we want to extend this benchmark by adding some of the newly introduced algorithms (such as PDMM [3], MBPO [2], Dreamer [1]) to help improving the community’s understanding about these algorithms. There is also a possibility to apply these algorithms to peg-insertion task using our simulation framework and also on the real robot.

Tasks
The tasks in this project will involve:

- **Identifying Potential Algorithms for Benchmarking:** It helps to get in touch with the authors of the original work and the benchmarking repository to avoid duplicated works.
- **Standardized Implementation:** Standardize the implementation w.r.t. Benchmarking MBRL [4] guidelines and add your contribution.
- **Potential Improvements:** Investigate different aspects of the algorithm for improvement (e.g.: better planner, learning a better representation, etc.)
- **Adapting to Peg-Insertion Task (Optional):** Adapt the implementation to the new task and investigate the sensitivity of the final performance w.r.t. the different aspect of the algorithm.

References

